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Abstract

Sparsity is an innate characteristic of recommender system databases and it is known to present
one of the most challenging difficulties collaborative filtering methods have to deal with. In
this paper, we propose Hierarchical Itemspace Rank (HIR); a novel recommendation algorithm
that exploits the intrinsic hierarchical structure of the itemspace to tackle this problem, and to
alleviate the related limitations it imposes to the quality of recommendation. A comprehensive
set of experiments on the MovieLens100K, the MovieLens1M and the Yahoo!R2Music datasets
indicates that our method is very effective in handling sparsity, even in its most extreme mani-
festation – the cold-start problem. Our tests show that HIR outperforms several state-of-the-art
recommendation algorithms in widely used metrics, having at the same time the advantage of
being computationally efficient and easily implementable.

Keywords: Recommender Systems, Collaborative Filtering, Sparsity, Ranking Algorithms,
Experiments

1. Introduction

Recommender Systems (RS) are information filtering systems designed to help online users
“clear the fog” of information overload. Given a set of users, a set of items and implicit or explicit
ratings that express how much a user likes or dislikes the items he has already seen, recommender
systems try to either predict the ratings of the unseen user-item pairs, or provide a list of items that
the user might find preferable. Out of several different approaches to building RS, Collaborative
Filtering (CF) is widely regarded as one of the most successful ones. The great impact of CF on
Web applications, and its wide deployment in important commercial environments, have led to
the significant development of the theory over the past decade, with a wide variety of algorithms
being proposed [1, 2, 3].

In most of these algorithms, the recommendation task reduces to predicting the ratings for
all the unseen user-item pairs, using the Root Mean Squared Error (RMSE) between the pre-
dicted and actual ratings as the evaluation metric [2, 4]. Latent factor models, and in particular
matrix factorization techniques, were shown to be particularly effective for this problem [5, 6].
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Recently, however, many leading researchers have pointed out that the use of RMSE criteria
to evaluate recommender systems is not an adequate performance index [7, 8, 9]; they showed
that even sophisticated methods, such as Asymmetric SVD and SVD++, trained to perform ex-
tremely well on RMSE, do not behave particularly well on the – much more common in practice
– top-N recommendation task [8]. These observations have turned significant research atten-
tion to ranking-based techniques which are believed to conform more naturally with how the
recommender system will actually be used in practice [7, 8, 10, 11, 12, 13].

Freno et al. [14] proposed a Hybrid Random Fields model [15] which they applied, together
with a number of well known probabilistic graphical models, including Dependency Networks,
Markov Random Fields and Naive Bayes [16], to predict top-N items for users. Shi et al. [17]
proposed a ranking-based recommendation method that learns a latent factor model by directly
maximizing a smoothed version of the mean reciprocal rank metric. Recently, Cremonesi et
al. [8] proposed PureSVD; an algorithm that uses the truncated singular value decomposition
to approximate the ratings matrix in order to produce recommendation vectors for the users.
Extensive experiments conducted by the authors show that PureSVD outperforms several state-
of-the-art matrix factorization techniques as well as standard neighborhood models in the top-N
recommendation task.

Despite their success in many application settings, ranking-based CF techniques encounter
a number of problems that remain to be resolved. The unprecedented growth of the number of
users and listed items in modern e-commerce applications makes many techniques suffer serious
computational and scalability issues that restrain their applicability in realistic scenarios. Addi-
tionally, an even more important problem that limits the quality of recommendations arises when
available data are insufficient for identifying similar elements and is commonly referred to as the
Sparsity problem. Sparsity is intrinsic to recommender systems because users typically interact
with only a small portion of the available items, and the problem is aggravated by the fact that
new items, with no ratings at all, are regularly added to the system. The latter is commonly
referred to as the cold-start problem and is known to be responsible for significant degradation
of CF performance [18, 19, 13].

Among the most promising approaches in dealing with sparsity are graph-based methods
[2, 11, 20, 21]. The methods of this family exploit transitive relations in the data, which makes
them able to estimate relationships between users and items that are not directly connected.
Fouss et al. [10, 11] create a graph model of the RS database and they present a number of meth-
ods to compute node similarity measures, including the random walk-related average Commute
Time and average First Passage Time, as well as the pseudo-inverse of the Laplacian matrix.
They compare their methods against other state-of-the-art graph-based approaches such as, the
sophisticated node similarity measure that integrates indirect paths in the graph, based on the
matrix-forest theorem [22], and a similarity measure based on the well known Katz algorithm
[23]. Gori and Pucci [21] proposed ItemRank; a PageRank-inspired scoring algorithm that pro-
duces a personalized ranking vector using a random walk with restarts on an items’ correlation
graph induced by the ratings.

In this work1, based on the intuition behind a recently proposed Web ranking framework
[25], we try to exploit the innately hierarchical nature of the underlying spaces to characterize
inter-item relations in a macroscopic level. We decompose the itemspace to define blocks of
closely related elements, and we use this decomposition to exploit the indirect proximity prop-
erties hidden in the structure of the itemspace. Central to our approach is the idea that blending

1This paper presents an extended version of the results published in [24].
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together the direct as well as the indirect components can refine the inter-item relations, reduce
the sensitivity to sparseness, and improve the quality of recommendations. Having this in mind,
we develop Hierarchical Itemspace Rank (HIR); a novel recommender framework that brings
together the above components in a generic and mathematically attractive way.

After describing formally the core components of our model, we proceed to the rigorous
mathematical definition of the involved matrices (Section 2.2), we present HIR algorithm (Sec-
tion 2.3) and we discuss its computational and storage needs (Section 2.4). In order to evaluate
experimentally its quality in realistic scenarios, we apply HIR on two different recommendation
domains; the classic movie recommendation problem using the standard MovieLens1M2 dataset
and the music recommendation problem using the Yahoo!R2Music dataset3 (Section 3). We test
the performance of our method in dealing with the problems caused by the low density of the
underlying space, by conducting a number of experiments that simulate the sparsity phenomenon
(Section 3.2), and we confirm that HIR displays great insensitivity, even when sparsity is severe
(new community problem). The same is true in the case when sparsity is localized; a problem
commonly occurring in recommender systems in operation because of the frequent introduction
of new users and new items to the database. For completeness, we also run HIR on the standard
evaluation benchmark dataset MovieLens100K (Section 3.3), using the publicly available pre-
defined splittings that allow direct comparisons to the many different results to be found in the
literature. Finally, we outline directions for future work (Section 4) and we conclude this work
(Section 5).

2. The HIR Framework

2.1. Notation
Throughout this paper, all vectors are represented by bold lowercase letters and they are

column vectors (e.g.,ω). All matrices are represented by bold upper case letters (e.g., C). The jth

row of matrix C is denoted cᵀj . The i jth element of matrix C is denoted Ci j. We use calligraphic
letters to denote sets (e.g.,U,V). Finally, symbol , is used in definition statements.

2.2. Model Definition
Let U = {u1, u2, . . . , un} be a set of users and V = {v1, v2, . . . , vm} a set of items. Let R be a

set of tuples ti j = (ui, v j, ri j), where ri j can either be a positive number referred to as the rating
given by user ui to the item v j, or simply a 0-1 valued variable (binary ratings). These ratings
can either come from the explicit feedback of the user or inferred by the user’s behavior and
interaction with the system. We consider a partition {L,T } of the ratings into a training set L
and a test set T . For each user ui, we denote Li the set of items rated by ui in L, and Ti the set
of items rated by ui in T . Formally:

Li , {vk : tik ∈ L} and Ti , {vl : til ∈ T }. (1)

Each user ui, for whom Li , ∅ holds, is associated with a vector

ωi , [ωi
1, ω

i
2, . . . , ω

i
m], (2)

2http://www.movielens.umn.edu .
3http://webscope.sandbox.yahoo.com/ .
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whose non-zero elements contain the user’s ratings that are included in the training set L, nor-
malized to sum to one. We refer to this as the preference vector of user ui.

We consider a family of non-empty sets

D , {D1,D2, . . . ,DK}, (3)

defined over the underlying space, V, according to a given criterion (e.g. the categorization of
movies into genres), such thatV =

⋃K
k=1Dk, holds.

We also define Gv to be the union of sets DI that contain v and we use Nv to denote the
number of different sets in Gv. Formally, the set Gv is given by:

Gv ,
⋃
v∈Dk

Dk (4)

As we will see below, these sets will form the basis for the characterization of the indirect inter-
item relations.

Having defined the parameters of our model, we are now ready to introduce the Direct As-
sociation Matrix C, and the Hierarchical Proximity Matrix D, that bring together the direct and
the hierarchical components of the underlying space, to enable our method to map each user’s
preference vector to a personalized distribution over the itemspace.

2.2.1. Direct Association Matrix C
The direct association matrix C is defined to capture the direct relations between the el-

ements of V. Generally, every such element will be associated with a discrete distribution
cᵀv = [c1, c2, · · · , cm] over V, that reflects the similarities between these elements. In our case,
we use the stochastic matrix that corresponds to the correlation graph proposed in [21]. Matrix
C is formally defined bellow.

We first need to define a matrix Q whose i jth element is Qi j , |Ui j|, whereUi j ⊆ U denotes
the set of users who rated both items vi and v j, i.e.

Ui j ,

{
{uk : (vi ∈ Lk) ∧ (v j ∈ Lk)} for i , j
∅ otherwise (5)

Then, if we use Q̂ to denote the row normalized version of Q, i.e. the matrix where every
non-zero row sums up to 1, the resulting matrix will be defined as follows:

C , Q̂ +
1
m

aeᵀ (6)

where a is a vector that indicates the zero rows of matrix Q (i.e. its ith element is 1 if and only if
Qi j = 0 for every j) and eᵀ is a properly sized unit vector.

Remark 1. The 1
m aeᵀ term in the definition of matrix C, is used to replace its 0ᵀ rows with

the uniform distribution over all items, thereby transforming C to a stochastic matrix. Note that
this “stochasticity adjustment” is often needed – especially in case of cold start recommendation
scenarios, when it is more likely to find pairs of movies that have been rated by disjoint sets of
users.

4



2.2.2. Hierarchical Proximity Matrix D
This matrix is created to depict the indirect connections between the elements of the itemspace

that arise from its innate hierarchical structure. The existence of such connections is rooted in
the idea that a user’s rating, except for expressing his direct opinion about a particular item, also
gives a clue about his preferences regarding related elements of the itemspace.

For example, if Alice gives 5 stars to a specific comedy/romantic movie, except for testifying
her opinion about that particular movie, also “hints” about her opinion regarding: firstly, com-
edy/romantic movies and secondly, comedies and romantic movies in general. In the presence
of sparsity, the assistance of these indirect relations could be extremely helpful, as we will see in
Section 3.

Following this line of thought, we associate each row of matrix D with a probability vector
dᵀ

v , that distributes evenly its mass between the Nv different sets of D, comprising Gv, and then,
uniformly to the included items of every such set. Formally, the i jth element of matrix D, that
relates item vi with item v j, is defined as:

Di j ,
∑

Dk∈Gvi ,v j∈Dk

1
Nvi |Dk |

(7)

Notice that Equation 7 together with the definition of the family of setsD, ensure that the result-
ing matrix D is row stochastic.

Example 1. To clarify the definition of matrices C,D, we give the following example:
Consider a simple Movie Recommendation System consisting of an itemspace of 8 movies

and a userspace of 10 users each having rated at least one movie. Let the set of ratings, R, be the
one presented below:

t11 = (u1, v1, 3) t38 = (u3, v8, 5) t76 = (u7, v6, 1)
t13 = (u1, v3, 4) t44 = (u4, v4, 5) t78 = (u7, v8, 2)
t17 = (u1, v7, 2) t52 = (u5, v2, 1) t83 = (u8, v3, 3)
t21 = (u2, v1, 5) t54 = (u5, v4, 3) t93 = (u9, v3, 2)
t27 = (u2, v7, 3) t66 = (u6, v6, 3) t103 = (u10, v3, 3)
t34 = (u3, v4, 3) t73 = (u7, v3, 3) t105 = (u10, v5, 4)

Assume also that the 8 movies of the itemspace belong to 3 genres as seen below:



D1 D2 D3 Nv Gv

v1 X − − 1 {v1, v2, v4}

v2 X − X 2 {v1, v2, v4, v5, v6, v7, v8}

v3 − X − 1 {v3, v4, v5, v8}

v4 X X − 2 {v1, v2, v3, v4, v5, v8}

v5 − X X 2 {v2, v3, v4, v5, v6, v7, v8}

v6 − − X 1 {v2, v5, v6, v7, v8}

v7 − − X 1 {v2, v5, v6, v7, v8}

v8 − X X 2 {v2, v3, v4, v5, v6, v7, v8}


In Figure 1, we present the direct association matrix C and the hierarchical proximity matrix

D that correspond to our simple recommender system. In the first row we see the correlation
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
Figure 1: We see the matrices C,D that correspond to Example 1. In the first row we highlight with blue color the
computation of the cv3 . In the second row we highlight with red and green color the computation of the D42 and D85,
respectively.

graph and the related matrix C. In the second row we see a graph presenting the detailed com-
putation of the hierarchical proximity matrix D.

2.3. The Hierarchical Itemspace Rank Algorithm

We are now ready to define the personalized ranking vector of HIR as the probability distri-
bution over the itemspace produced by the algorithm presented below:

Algorithm 1 Hierarchical Itemspace Rank (HIR)
Input: Matrices C,D ∈ Rm×m, parameters α, β > 0 such that α + β < 1, and the personalized
preference vector ω ∈ Rm

Output: The ranking vector for the user, π ∈ Rm

1: πᵀ ← (1 − α − β)ωᵀ

2: for all ω j , 0 do
3: πᵀ ← πᵀ + ω j(αcᵀj + βdᵀ

j )
4: end for
5: return π

Theorem 1. For every preference vectorω, the personalized vector π produced by the HIR algo-
rithm is a well-defined normalized recommendation vector that denotes a probability distribution
over the item setV.
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Proof. Clearly, for every preference vector ω, and for α, β > 0 such that α + β < 1 holds, π is a
non-negative vector. Thus, it suffices to show that πᵀe = 1. We have:

πᵀe =

(1 − α − β)ωᵀ + α
∑

j:ω j,0

ω jcᵀj + β
∑

j:ω j,0

ω jdᵀ
j

 e

= (1 − α − β)ωᵀe + α
∑

j:ω j,0

ω jcᵀj e + β
∑

j:ω j,0

ω jdᵀ
j e

However, since the elements of the preference vector ω are by definition normalized to sum to
one4, and matrices C and D are row stochastic, we get:

πᵀe = (1 − α − β) + α
∑

j:ω j,0

ω j + β
∑

j:ω j,0

ω j

= (1 − α − β) + α + β = 1

and the proof is complete. �

2.4. Storage Aspects
Direct Association Matrix Matrix C is innately sparse and scales very well with the increase

of the number of users; the addition of a new user to the system could result only in an
increase of the number of non-zero elements of C, since the dimension of the matrix de-
pends solely on the cardinality of the itemspace, which in most real applications increases
slowly [21].

Hierarchical Proximity Matrix In case of matrix D, from the definition of the family of sets
D, it becomes intuitively obvious that whenever K < m, matrix D is a low-rank matrix.
Furthermore, a closer look at its definition, suggests a very useful factorization of matrix
D, that can be exploited in order to achieve efficient storage and computability.

In particular, let us define an “aggregation” matrix A ∈ Rm×K , such that

Aik ,

{
1 if vi ∈ Dk

0 otherwise (8)

It is then easy to observe that matrix D can be written as the product of the row-stochastic
versions of the aggregation matrix and its transpose respectively. Rigorously,

D = XY, X ∈ Rm×K ,Y ∈ RK×m (9)

with matrices X,Y defined by
X , S−1A (10)

and
Y , T−1Aᵀ (11)

where S , diag(Ae) and T , diag(Aᵀe) are diagonal matrices.

4Note also that the definition of preference vector asserts that it contains at least one element greater than zero (see
Section 2.2).
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Notice here that the definition ofD ensures the invertibility of matrices S and T, thus matrices
X,Y are well defined irrespectively of any particular set R and decomposition D. The result is
given formally in the following lemma.

Lemma 1. Matrices X and Y are well defined for any decompositionD satisfying the definition
given in Section 2.2.

Proof. It suffices to show that matrices S,T are necessarily invertible for every possible matrix
A. Notice that the definition ofD ensures that matrix A has the following properties:

(a) Every row of A denotes a non-zero vector in RK .
(b) Every column of A denotes a non-zero vector in Rm.

Property (a) holds since the existence of a zero row in matrix A implies V ,
⋃K

k=1Dk, which
contradicts the definition of D. Property (b) holds also since the sets comprising D are defined
to be non-empty5.

Now, notice that these two properties of A ensure that both Ae and Aᵀe denote vectors of
strictly positive elements, which makes the diagonal matrices S,T invertible, as needed.

2.5. Computational Aspects
From a computational point of view, we see that step 3 of our algorithm involves O(|V|)

operations and it is executed |Li| times. Typically, |Li| � m since users interact with only a very
small fraction of the available items, so the resulting burden is small.

Furthermore, the factorization of matrix D into a product of two extremely sparse matrices
and the innately low density of the ratings matrix, suggest a very efficient batch computation
scheme of HIR recommendation vectors. In particular, if we define a matrixΩ ∈ Rn×m such that:

Ω ,


(ω1)ᵀ

(ω2)ᵀ
...

(ωn)ᵀ

 (12)

we can compute the recommendation vectors for every user in the system without ever needing
matrix D to be explicitly computed, allowing at the same time, the exploitation of the highly
optimized sparse BLAS3 set of low-level kernel subroutines. The batch computation is presented
below:

Algorithm 2 Batch HIR Computation
Input: Matrices C,X,Y, parameters α, β > 0 such that α+β < 1, and the personalized preference
matrix Ω
Output: The ranking matrix for users, Π ∈ Rn×m

1: Π← (1 − α − β)Ω
2: Π← Π + α(ΩC) + β((ΩX)Y)
3: return Π

The rows of matrix Π ∈ Rn×m contain the recommendation vectors for every user inU.

5Note that allowing the existence of empty sets would be meaningless from a modeling perspective.
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3. Experimental Evaluation

To evaluate HIR, we apply it to two problems originating from different recommendation
domains, namely

• Movie Recommendation. We test our method using the standard MovieLens100K and
MovieLens1M datasets, that have been widely used for the performance evaluation of
recommender systems. MovieLens datasets also come with information that relates the
movies to genres; this was chosen as the criterion of decomposition for the definition of
the hierarchical proximity matrix.

• Music Recommendation. To evaluate HIR on the music recommendation problem we make
use of the Yahoo!R2Music dataset. This is a relatively new dataset representing a snapshot
of the Yahoo!Music community’s preferences for different songs. The dataset contains
over 717 million ratings and for every song there exists useful meta-information about the
artists, the albums and the music genre it belongs to. In our experiments we used the artists
as the criterion for the decomposition behind the definition of matrix D.

More details about the datasets are presented in Table 1.

Table 1: The MovieLens and Yahoo! datasets used for the experiments.

Dataset #Users #Items #Ratings

MovieLens100K 943 1,682 100,000
MovieLens1M 6,040 3,883 1,000,209

Yahoo!R2Music 1,823,179 136,736 717,872,016

3.1. Competing Recommendation Methods and Evaluation Metrics
We test HIR against seven state-of-the-art ranking-based recommendation methods: the node

similarity algorithms L†, and Katz; the random walk approaches First Passage Time (FP) and
Commute Time (CT); the Matrix Forest Algorithm (MFA); and finally, the well known algo-
rithms ItemRank (IR) and PureSVD6. Notice that all algorithms except ItemRank and PureSVD
can also take advantage of the hierarchy of the itemspace, which – as we will see in the following
sections – can provide significant help in cases of extreme sparsity.

3.1.1. Implementation of Competing Methods
All competing algorithms were implemented in Matlab. For the computation of L† we used

the formula
L† = (L −

1
n + m + K

eeᵀ)−1 +
1

n + m + K
eeᵀ (13)

where L is the Laplacian of the graph model of the recommender system (see [11] for details),
n, the number of users, m, the number of items, and K, the number of blocks. MFA similarity
matrix is computed by

M = (I + L)−1 (14)

6The choice of the number of latent factors for PureSVD was determined experimentally for each dataset. In the
following sections we report the best results achieved.
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and Katz similarity matrix is computed by

K = αA + α2A2 + · · · + αnAn + · · · = (I − αA)−1 − I (15)

where A is the adjacency matrix of the graph and α measures the attenuation in a link (see [10]).
For the inversions we used the inv function of Matlab. The Average First Passage Time is
computed by iteratively solving the recurrence{

FP(k|k) = 0
FP(k|i) = 1 +

∑n+m+K
j=1 pi j FP(k| j), for i , k (16)

where pi j is the conditional probability a random walker visits node j next, given that he is
currently in node i. Having computed the Average First Passage times the Average Commute
Time can be obtained by

CT(i, j) = FP(i| j) + FP( j|i) (17)

Finally, ItemRank was computed using the Power Method as suggested by the authors in [21],
and PureSVD by applying Matlab’s svds function on the Ratings matrix.

Note here that all random-walk approaches require to handle a graph of (n + m + K) nodes
and to compute 2nm first passage time scores. L†, Katz and MFA, involve the inversions of an
(n + m + K)-dimensional square matrix. Similarly, PureSVD methods involves the computation
of the truncated singular value decomposition of an (n×m) matrix; problems that easily become
intractable as the number of users in the system grows. In fact, only HIR and ItemRank involve
matrices whose dimensions depend solely on the cardinality of the itemspace, which in most
realistic applications increases slowly. However, in our experiments, we observe that HIR runs
at least 10-15 times faster than ItemRank7. This is true for every dataset we experimented on.

3.1.2. Metrics
To evaluate the performance of HIR, except for the standard Spearman’s ρ and Kendall’s

τ metrics [26, 27], we also use two other well known ranking measures, namely the Degree of
Agreement (DOA) [10, 14, 21] and the Normalized Distance-based Performance Measure
(NDPM) [27], outlined below. Table 2 contains all the necessary definitions.

Kendall’s τ is an intuitive nonparametric rank correlation index that has been widely used in the
literature. The τ of ranking lists ri, πi is defined to be:

τ ,
C − D

√
N − Tr

√
N − Tπ

(18)

and takes the value of 1 for perfect match and -1 for reversed ordering.

Spearman’s ρ is another widely used non-parametric measure of rank correlation. The ρ of
ranking lists ri, πi is defined to be:

ρ ,
1
m

∑
v j

(ri
v j
− r̄i)(πi

v j
− π̄i)

σ(ri)σ(πi)
(19)

7Choosing convergence tolerance 10−5, damping factor 0.85 (as suggested by the authors [21]), and computing the
recommendation vectors for all the users in batch for both methods, in order to exploit the highly optimized BLAS3
kernels.

10



Table 2: A summary of the notation used for the definition of the evaluation metrics.

Notation Meaning

ri User’s ui reference ranking
πi RS generated ranking
ri

v j
Ranking score of the item v j in user’s ui ranking list (reference ranking)

πi
v j

Ranking score of the item v j in user’s ui ranking list (RS generated ranking)
C Number of pairs that are concordant
D Number of discordant pairs
N Total number of pairs
Tr Number of tied pairs in the reference ranking
Tπ Number of tied pairs in the system ranking
X Number of pairs where the reference ranking does not tie,

but the recommender system’s ranking ties (N − Tr −C − D)
m Total number of items

where the ·̄ and σ(·) denote the mean and standard deviation. The ρ takes values from -1 to
1. A ρ of 1 indicates perfect rank association, a ρ of zero indicates no association between
the ranking lists and a ρ of -1 indicate a perfect negative association of the rankings.

Normalized Distance-based Performance Measure The NDPM of ranking lists ri, πi is de-
fined to be:

NDPM ,
D + 0.5X
N − Tr

(20)

The NDPM measure gives a perfect score of 0 to RS that correctly predict every preference
relation asserted by the reference. The worst score of 1 is assigned to recommendation
vectors that contradict every preference relation in ri [27, 28].

Degree of Agreement (DOA) is a performance index commonly used in the recommendation
literature to evaluate the quality of ranking-based CF methods [10, 14, 21, 29]. DOA is a
variant of the Somers’ D statistic [30], defined as follows:

DOAi ,

∑
v j∈Ti∧vk∈Wi

[πi
v j
> πi

vk
]

| Ti | ∗ | (Li ∪ Ti) |
(21)

where [S ] equals 1, if statement S is true and zero otherwise. Macro-averaged DOA
(macro-DOA) is the average of all DOAi and micro-averaged DOA (micro-DOA) is the
ratio between the aggregate number of item pairs in the correct order and the total number
of item pairs checked (for further details see [10, 14]).

In the following section we evaluate the performance of the algorithms on three repeatedly
occurring manifestations of the sparsity problem, often referred to as the Cold-Start Problems.
For this evaluation we use Movielens1M dataset as well as the larger and sparser Yahoo!R2Music
dataset. Then, in Section 3.3, for completeness we also run HIR on the standard benchmark
MovieLens100K in order to allow direct comparisons with the many different results that have
been published in the literature.
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3.2. Dealing with Sparsity

The cold-start problems refer to the difficulty of making reliable recommendations due to an
initial lack of ratings. This is a very common situation faced by real recommender systems [3]
and it usually manifests itself in three different cases:

(a) In the beginning stages of a system – New Community problem; the de facto small number
of ratings results in a dataset with density too low for CF algorithms to uncover meaningful
relations between items or users.

(b) With the addition of new users to the system – New Users problem; naturally, because
these users are new, they have not rated many items and thus, the CF algorithm can not
make reliable personalized recommendations yet.

(c) With the introduction of new items to the system’s database – New Items problem; having
little or no ratings at all, the relation of these items with the rest of the elements of the
itemspace is not immediately clear.

3.2.1. New Community
In order to demonstrate the merits of our method in dealing with the new community problem,

we conduct the following experiment. We simulate the phenomenon of sparseness by randomly
selecting to include 10%, 20%, and 30% of the overall ratings on three new artificially sparsified
versions of each dataset. The idea is that these modified versions represent early snapshots of the
system’s evolution, when the community was young and – as a result – the density of the dataset
lower.

First, to show the positive effect of the exploitation of hierarchical proximity and the related
matrix D, we run HIR using different values of β, varying from β = 0 to β = 0.4, keeping the
sum α + β = 0.9, and we test the quality of the recommendation list produced by each instance
of HIR, using as reference ranking for each user his complete set of ratings from the original
dataset. The measures used for this comparison is the Kendall’s τ, the Spearman’s ρ, the NDPM
and the macro-DOA. Low value of the NDPM and high value of the other three metrics suggests
that the ranking lists produced using the extremely sparse data are “close” to the preferences of
the users, as described by their full set of ratings.

Table 3: HIR performance for the New Community problem for varying β on the Yahoo!R2Music and MovieLens1M

datasets.

Yahoo!R2Music MovieLens1M

Dataset
Density

α = 0.9
β = 0

0.85
0.05

0.8
0.1

0.7
0.2

0.6
0.3

0.5
0.4

Dataset
Density

α = 0.9
β = 0

0.85
0.05

0.8
0.1

0.7
0.2

0.6
0.3

0.5
0.4

τ

0.33% 0.1295 0.1345 0.1354 0.1356 0.1353 0.1349 0.43% 0.1923 0.1886 0.1900 0.1916 0.1919 0.1905
0.49% 0.1367 0.1407 0.1415 0.1416 0.1413 0.1408 0.85% 0.1989 0.1990 0.2001 0.2015 0.2018 0.2007
0.66% 0.1430 0.1464 0.1472 0.1474 0.1471 0.1466 1.28% 0.2044 0.2050 0.2060 0.2073 0.2077 0.2070

N
D

PM

0.33% 0.1289 0.1165 0.1148 0.1148 0.1157 0.1167 0.43% 0.1269 0.1215 0.1187 0.1154 0.1152 0.1182
0.49% 0.0937 0.0838 0.0823 0.0825 0.0837 0.0851 0.85% 0.0959 0.0924 0.0900 0.0873 0.0870 0.0895
0.66% 0.0738 0.0653 0.0637 0.0638 0.0650 0.0665 1.28% 0.0826 0.0796 0.0775 0.0749 0.0743 0.0761

ρ

0.33% 0.1549 0.1609 0.1620 0.1622 0.1619 0.1614 0.43% 0.2303 0.2305 0.2321 0.2342 0.2345 0.2329
0.49% 0.1672 0.1720 0.1730 0.1732 0.1727 0.1721 0.85% 0.2433 0.2449 0.2463 0.2481 0.2484 0.2472
0.66% 0.1754 0.1795 0.1805 0.1807 0.1803 0.1797 1.28% 0.2507 0.2523 0.2536 0.2553 0.2558 0.2549

D
O

A 0.33% 0.8410 0.8568 0.8590 0.8590 0.8579 0.8566 0.43% 0.8626 0.8695 0.8726 0.8764 0.8768 0.8735
0.49% 0.8689 0.8832 0.8855 0.8852 0.8836 0.8817 0.85% 0.8860 0.8904 0.8935 0.8970 0.8974 0.8944
0.66% 0.8806 0.8948 0.8974 0.8974 0.8956 0.8933 1.28% 0.8891 0.8934 0.8964 0.9002 0.9010 0.8986
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Table 3 reports the average values of each metric for every user that has at least one item
rated in the modified dataset. The results show that the introduction of even a very small β =

0.05 induces a positive effect in dealing with the new community problem. The ranking quality
continues to increase with β, reaching the best score when β takes a value between 0.1 and 0.3
for all different evaluation metrics considered. Then, the quality begins to drop, as expected,
because the direct inter-item relations get increasingly ignored.

0.33% 0.49% 0.66%
0.07

0.12

0.18

Dataset density

NDPM

0.33% 0.49% 0.66%
0.1

0.12

0.14

Dataset density

Kendall’s τ

0.33% 0.49% 0.66%
0.12

0.14

0.16

0.18

Dataset density

Spearman’s ρ

0.33% 0.49% 0.66%

0.8

0.85

0.9

Dataset density

DOA

HIR Katz FP CT MFA L† IR PureSVD

Figure 2: Ranking performance for the New Community problem on the Yahoo!R2Music dataset.

Figures 2 and 3, show the performance of HIR against the other algorithms for the different
stages of the newly emerging system. As expected, L†, MFA, FP, Katz and CT, which can
also exploit hierarchy, do better than ItemRank and PureSVD. L† and MFA, in particular in the
MovieLens dataset, even though they start rather badly in the sparser dataset, they soon overpass
the rest graph-based methods, managing to reach the 2nd and 3rd place, respectively, in the
most dense case. FP on the other hand shows consistent performance in both datasets with its
advantage being greater in the sparsest cases. Finally, we clearly see that HIR performs very well
on both datasets, exhibiting very good results even in the sparsest cases.

These results verify the intuition behind HIR; even though the direct item-item relations of
the dataset collapse with the exclusion of such many ratings, the indirect relations captured by
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0.43% 0.85% 1.28%
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DOA

HIR Katz FP CT MFA L† IR PureSVD

Figure 3: Ranking performance for the New Community problem on the MovieLens1M dataset.

matrix D decay harder and thus, preserve longer the coarser structure of the data. This results in
a recommendation ranking vector that proves to be less sensitive to the sparsity of the underlying
space.

3.2.2. New Users
To evaluate the performance of our algorithm in coping with the new users problem, we

conduct the following experiment: We randomly select 200 users having rated 100 items or
more and then we randomly delete 96%, 94% and 92% of each users’ ratings in order to create
three datasets. The idea here is that these modified datasets represent “previous versions” of the
system, when these users were new, and as such, had rated fewer items.

Following, an approach similar to the new community test presented earlier, we test the
positive effect that comes from the introduction of matrix D, by running HIR for different values
of β, for all the ranking measures, using the complete set of ratings as a reference list. Table
4 reports the average values of each metric over the set of new users, for each dataset. The
experiment again verifies that the introduction of even a very small β increases the ranking quality
with the best results this time achieved for β around 0.2.
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Table 4: HIR performance for the New Users problem for varying β on the Yahoo!R2Music and MovieLens1M datasets.

Yahoo!R2Music MovieLens1M

Included
Ratings

α = 0.9
β = 0

0.85
0.05

0.8
0.1

0.7
0.2

0.6
0.3

0.5
0.4

Included
Ratings

α = 0.9
β = 0

0.85
0.05

0.8
0.1

0.7
0.2

0.6
0.3

0.5
0.4

τ

4% 0.2004 0.2031 0.2032 0.2028 0.2023 0.2019 4% 0.2538 0.2550 0.2559 0.2562 0.2542 0.2496
6% 0.2074 0.2118 0.2125 0.2123 0.2117 0.2111 6% 0.2554 0.2567 0.2577 0.2585 0.2574 0.2537
8% 0.2573 0.2586 0.2598 0.2610 0.2604 0.2575 8% 0.2573 0.2586 0.2598 0.2610 0.2604 0.2575

N
D

PM

4% 0.1767 0.1727 0.1726 0.1733 0.1741 0.1747 4% 0.1193 0.1169 0.1153 0.1148 0.1176 0.1245
6% 0.1650 0.1583 0.1574 0.1578 0.1587 0.1596 6% 0.1166 0.1141 0.1124 0.1110 0.1126 0.1179
8% 0.1570 0.1485 0.1471 0.1472 0.1483 0.1495 8% 0.1138 0.1112 0.1093 0.1073 0.1080 0.1121

ρ

4% 0.2467 0.2500 0.2502 0.2497 0.2491 0.2487 4% 0.3132 0.3150 0.3162 0.3167 0.3143 0.3088
6% 0.2556 0.2610 0.2618 0.2616 0.2610 0.2603 6% 0.3154 0.3172 0.3186 0.3196 0.3182 0.3139
8% 0.2618 0.2686 0.2699 0.2700 0.2692 0.2683 8% 0.3178 0.3197 0.3212 0.3227 0.3220 0.3186

D
O

A 4% 0.8198 0.8241 0.8242 0.8235 0.8228 0.8222 4% 0.8831 0.8857 0.8874 0.8881 0.8852 0.8782
6% 0.8287 0.8360 0.8370 0.8366 0.8357 0.8348 6% 0.8837 0.8864 0.8883 0.8899 0.8883 0.8827
8% 0.8336 0.8430 0.8446 0.8845 0.8434 0.8422 8% 0.8843 0.8872 0.8894 0.8917 0.8910 0.8867

Figures 4 and 5, report the average scores for all different measures and all different percent-
ages of included ratings, for the set of new users. Again, we see that the best results are reached
by the methods that can exploit the categorization of items to blocks, as expected. As before, we
see that HIR clearly outperforms every other algorithm giving good results even when only 4%
of the ratings were included for each user.

The results were expected and are consistent with the way HIR views the problem. Even
though new users’ tastes are not yet clear, the exploitation of hierarchical proximity can help
“propagate” this scarce rating information to the many related elements of the itemspace, giving
HIR a “fighting chance” at uncovering new users’ preferences.

3.2.3. New Items
Lastly, we evaluate HIR’s performance in coping with the new items problem. We randomly

select 10%, 12.5% and 15% of the items in the dataset that have at least 30 ratings, and we
randomly delete 90% of their ratings in order to create three modified versions of the dataset.

We run HIR and the other algorithms on the original and the three new datasets and we
compare the rankings induced on the modified data with their corresponding original rankings
resorting to the widely used Kendall’s τ, Spearman’s ρ and the distance-based NDPM index8.
Good scores in these tests suggest that the distance of the two ranking lists is small, which means
that the new movies are more likely to receive treatment similar to their original one. The results
are reported in Table 5.

On the Yahoo!R2Music data we see that HIR achieves very good results reaching the first
place with respect to the NDPM and the Kendall’s τ metrics and the 3rd with respect to the
Spearman’s ρmetric. On the MovieLens1M dataset the results clearly show that HIR outperforms
every other recommendation method considered for all different metrics, exhibiting high ranking
stability and sparseness insensitivity.

8DOA score has only been used in the literature for the evaluation of the quality of a recommendation list with respect
to a reference ranking of the user [10, 14, 21]. Its properties as a measure of distance between rankings have not been
evaluated. Thus, we decided to avoid using it for our New Items problem tests, where we try to evaluate the stability of
the ranking vectors.
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Figure 4: Ranking performance for the New Users problem on the Yahoo!R2Music dataset.

Again, this is in accordance with the way HIR views the problem. In our method, the ranking
score of the items is not exclusively determined by their ratings alone; their proximal sets also
matter, because they “sketch” the relations of these items to the other elements of the itemspace.
Thus, even though the number of ratings is insufficient, the interlevel relations captured by matrix
D, reduce this gap and make sure that the newly emerging items are treated more fairly.

3.3. Quality of Recommendations
As mentioned earlier, for completeness and in order to make direct comparisons with several

other ranking-based methods, we run HIR9 on the MovieLens100K dataset as well. Table 6
presents the micro-DOA and macro-DOA values measured by 5-fold cross-validation. The test
employs the publicly available predefined partitioning of the dataset into five pairs of training
and test sets. All the DOA scores included in this table can be found in the literature and refer to

9using the formulation of matrix C presented in our original paper [24].
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Figure 5: Ranking performance for the New Users problem on the MovieLens1M dataset.

the same predefined splittings. We see that HIR outperforms all other state-of-the-art techniques
considered, by obtaining a macro-DOA value of 89.99 which is about 6.8% greater than the
baseline (MaxF). The same is true for the micro-DOA measure, where HIR achieves an 88.85
value opposite to 88.09 of Markov Random Fields and 88.07 of Hybrid Random Fields models.

4. Future Work

One very interesting research direction we are currently pursuing involves the effect of the
granularity of the chosen decomposition of the itemspace. Intuitively, there seems to be a trade-
off between the sparseness insensitivity – which is generally assisted by coarse grained decom-
positions; and the quality of recommendations – which seems to be supported by more detailed
categorizations. Another interesting path that remains to be explored involves the introduction
of more than one decompositions based on different criteria, and the effect it has to the various
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Table 5: Ranking stability for the New Items problem on the Yahoo!R2Music and MovieLens1M datasets.

Yahoo!R2Music MovieLens1M

HIR Katz FP CT MFA L† IR PureSVD HIR Katz FP CT MFA L† IR PureSVD

10% New Items

NDPM .1593 .1735 .1644 .1640 .1708 .1692 .1665 .2606 .0913 .1211 .1145 .1196 .1201 .1204 .0989 .1609
τ .6814 .6529 .6712 .6719 .6585 .6617 .6669 .4788 .8174 .7578 .7710 .7608 .7598 .7593 .8022 .6782
ρ .6911 .6160 .6041 .6308 .7291 .7352 .5849 .6317 .8881 .8453 .8539 .8490 .8476 .8479 .8343 .8154

12.5% New Items

NDPM .1904 .2066 .1938 .1922 .2032 .2016 .2006 .2807 .1126 .1396 .1328 .1381 .1373 .1374 .1236 .1841
τ .6192 .5868 .6125 .6156 .5932 .5968 .5987 .4386 .7749 .7208 .7345 .7238 .7254 .7253 .7527 .6317
ρ .6262 .5434 .5330 .5639 .6717 .6786 .5056 .5865 .8576 .8116 .8223 .8168 .8191 .8196 .7874 .7746

15% New Items

NDPM .2154 .2325 .2212 .2195 .2277 .2260 .2291 .3067 .1319 .1585 .1505 .1563 .1570 .1570 .1460 .1977
τ .5691 .5350 .5577 .5610 .5446 .5479 .5418 .3865 .7363 .6829 .6991 .6875 .6859 .6860 .7081 .6046
ρ .5713 .4760 .4604 .4954 .6241 .6308 .4266 .5267 .8315 .7768 .7908 .7845 .7838 .7846 .7459 .7493

Table 6: Average performance between HIR and other state-of-the-art recommendation algorithms, computed over the
same standard predefined folds using the MovieLens100K, as published in the literature [14, 21, 24, 29].

macro-DOA micro-DOA

Hierarchical Itemspace Rank 89.99 88.85
Hybrid Random Fields 89.83 88.07
Markov Random Fields 89.47 88.09
Topical PageRank 89.08 –
Naive Bayes 88.87 86.66
ItemRank 87.76 87.06
Katz 85.85 –
L† 87.23 –
Commute Time 84.09 –
First Passage 84.08 –
MaxF 84.07 –
PCA Commute Time 84.04 –
Dependency Networks 80.51 81.33

performance metrics. Notice, that in our method this can be achieved readily, through the intro-
duction of new low rank hierarchical proximity matrices, D1,D2, . . . and associated parameters
β1, β2, . . . , with no effect on the dimensionality of the model.

5. Conclusions

In this paper we proposed Hierarchical Itemspace Rank (HIR); a novel recommender method
that exploits the innate hierarchical structure of the itemspace to provide an elegant method for
generating ranking-based recommendations. HIR decomposes the itemspace into item-blocks
and exploits this decomposition to define new levels of indirect proximity between the elements
of the dataset. This view gives rise to a corresponding stochastic matrix which can be used to
enrich the direct inter-item relations and reduce the sensitivity to sparsity. The resulting model
is scalable and computationally efficient due to the fact that its dimension is independent of the
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number of users, as well as because of the attractive mathematical properties of the hierarchical
proximity matrix, which allow easy computational handling.

A comprehensive set of experiments on the MovieLens as well as the Yahoo!R2Music

datasets suggests that our method exhibits low susceptibility to the problems caused by Sparsity
and proves to be very effective in handling even its most extreme manifestations – the cold-start
problems. HIR achieves high quality results in both music and movie recommendation domains
for various metrics, outperforming several state-of-the-art recommender algorithms, including
methods of – the promising for its anti-sparsity properties – graph-based recommender family.
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