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Introduction & Motivation



Revisiting the Random Surfer Model I

PageRank Model

G = αH + (1− α)E
Primitivity Adjustment of the Row-Normalized Adjacency Matrix H:

• Damping Factor α

• Has received much attention (Generalized Damping Functions
(Functional Rankings) [1], Multidamping [5], ...)

• Teleportation matrix E

• Little have been done towards its generalization [8].
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Revisiting the Random Surfer Model II

Problems With Traditional Teleportation

• Treats nodes in a “leveling way”

• Restrictive or even counter-intuitive (eg. structured graphs)

• Blind to the spectral characteristics of the underlying graph

Overview of Our Approach

• We focus on Multipartite
Graphs

• We modify the traditional
teleportation model

• Different Teleportation
behavior per partite set.
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Block Teleportation Model:
Definition, Algorithm and
Theoretical Analysis



Model Definition

H ≜ diag(AG1)
−1AG ,

Each partite set is a Teleportation Block!

[M]ij ≜
{

1
|Mi|

, if vj ∈Mi,

0, otherwise,

where Mi the origin partite set of vi.

M = R∆R⊺︸ ︷︷ ︸
Sparse and Low-Rank Factors

S = ηH+ µM

Random Surfing
Interpretation
The Random Surfer:

• With probability η follows the
edges of the graph

• With probability µ ≜ 1− η he
jumps to a node belonging to
the same partite set he is
currently in.

4



Decomposability and Time-Scale Dissociation

Theorem (Decomposability)
When the value of the teleportation parameter µ is small
enough, the Markov chain corresponding to matrix S is NCD
with respect to the partition of the nodes of the initial graph,
into different connected components.

S = S̃+ εC, S̃ ≜ diag{S(G1), . . . ,S(GL)}
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+
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I=2

λ
t
1I

Z1I︸ ︷︷ ︸
Term B

+

L∑
I=1

n(I)∑
m=2

λ
t
mI

ZmI︸ ︷︷ ︸
Term C

,

S̃
t

=
L∑

I=1

Z̃1I︸ ︷︷ ︸
Term Ã

+
L∑

I=1

n(I)∑
m=2

(λ̃)
t
mI

Z̃mI︸ ︷︷ ︸
Term C̃

.

• Short-term Dynamics.
• Short-term Equilibrium.
• Long-term Dynamics.
• Long-term Equilibrium.

Computational Implications... in brush strokes!
Study each Connected Component in Isolation, and then combine the results.

5



BT-Rank Algorithm and Computational Analysis

Block-Teleportation Rank
Input: H,M ∈ Rn×n, ϵ, scalars

η, µ > 0 such that η + µ = 1.
Output: π⊺

1: Let the initial approximation be
π⊺

(0)
. Set k = 0.

2: Compute

π⊺
(k+1)

← π⊺
(k)

H

ϕ⊺ ← π⊺
(k)

M

π⊺
(k+1)

← ηπ⊺
(k+1)

+ µϕ⊺

3: Normalize π⊺
(k+1)

and compute
r = ∥π⊺

(k+1)
− π⊺

(k)
∥1.

4: If r < ϵ, quit with π⊺
(k+1)

,
otherwise k ← k + 1 and go to
step 2.

General Cost: Θ(nnz(H))︸ ︷︷ ︸
per iteration

log ϵ

log|λ2(S)|

If χ(G) = 2 we can dig a little
deeper!

Theorem (Eigenvalue Property )
Assuming G is a connected graph for which χ(G) = 2

holds, the spectrum of the stochastic matrix S is such
that −η + µ ∈ λ(S).

Theorem (Lumpability )
The BT-Rank Markov chain that corresponds to a
2-chromatic graph, is lumpable wrt A = {A1,A2}.

Theorem (Perron Vector )
When the BT-Rank Markov chain is lumpable wrt to
partition A, for the left Perron eigenvector of matrix
S it holds

π
⊺
11A1

= π
⊺
21A2 6



Experimental Evaluation



Computational Experiments
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Qualitative Experiments: Ranking-Based Recommendation I

Our Approach

• We model the recommender as a tripartite graph

Users Movies Genres

• Personalization through matrix M ≜ diag
(
1e⊺i ,1ω

⊺
i ,1ϖ

⊺
i

)
• ωi : the normalized vector of the users’ ratings over the set of

movies.
• ϖi : the normalized vector of his mean ratings per genre.
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Qualitative Experiments: Ranking-Based Recommendation II

Methodology
• Randomly sample 1.4% of the ratings ⇒ probe set

P

• Use each item vj , rated with 5 stars by user ui in P
⇒ test set T

• Randomly select another 1000 unrated items of the
same user for each item in T

• Form ranked lists by ordering all the 1001 items

Metrics

• Recall@N

• Normalized Discounted
Cumulative Gain
(NDCG@N)

• Mean Reciprocal Rank
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Conclusions & Future Work



Conclusion & Future Work

Synopsis
We proposed a simple alternative teleportation component for Random
Surfing on Multipartite Graphs.

• Can be handled efficiently
• Entails nice theoretical properties
• Allows for richer modeling

Future Directions

• Propose a Systematic Framework for the definition of teleportation
models that match better the underlying graphs

• For the Web-Graph: NCDawareRank (WSDM’13)
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Appendix: Eigenvalue Theorem
Back

Theorem (Eigenvalue Property)
Assuming G is a connected graph for which χ(G) = 2 holds, the spectrum of the
stochastic matrix S is such that −η + µ ∈ λ(S).

Proof Sketch.

• We define a vector v ≜ [

#nodes of 1st partite set︷ ︸︸ ︷
1 1 1 · · · 1

#nodes of 2nd partite set︷ ︸︸ ︷
−1 − 1 · · · − 1 ]

• We show that (−1,v) is an eigenpair of matrix H, and (1,v) is an eigenpair of matrix M.

• Then, using any nonsingular matrix, Q ≜ (
1 v X

)
, allows us to perform a similarity

transformation

Q−1SQ = Q−1 (ηH+ µM)Q = · · · =

=

1 0 ηy1
⊺HX+ µy1

⊺MX

0 −η + µ ηy2
⊺HX+ µy2

⊺MX

0 0 ηY⊺HX+ µY⊺MX

 (1)

that reveals the desired eigenvalue.



Appendix: Lumpability Theorem
Back

Theorem (Lumpability of the BT-Rank Chain)
The BT-Rank Markov chain that corresponds to a 2-chromatic graph, is lumpable.

Proof Sketch.
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
We have

• Pr{i → A2} =
∑

j∈A2
Sij = η for all i ∈ A1.

• Pr{i → A1} =
∑

j∈A1
Sij = η for all i ∈ A2.



Appendix: Perron Vector Theorem
Back

Theorem (Eigenvector Property)
When the BT-Rank Markov chain is lumpable with respect to partition A = {A1,A2}, for the
left Perron-Frobenius eigenvector of matrix S it holds

π
⊺
11A1

= π
⊺
21A2

Proof Sketch.

π
⊺
S

(
1A1

0

0 1A2

)
= π

⊺
(
1A1

0

0 1A2

)
π

⊺
(
µM111A1

ηH121A2

ηH211A1
µM221A2

)
=

(
π⊺

11A1
π⊺

21A2

)
(
π⊺

1 π⊺
2

)(µ1A1
η1A1

η1A2
µ1A2

)
=

(
π⊺

11A1
π⊺

21A2

)
and the result follows from the solution of the system.



Appendix: Near Complete Decomposability
Back

Herbert A. Simon
Sparsity ←→ Hierarchy ←→ Decomposability [10].

Nearly Completely Decomposable Systems
Interactions: Strong Within Blocks - Weak Between Blocks

• Successful Applications in Diverse Disciplines
• Economics, Cognitive Theory, Management,

Biology, Ecology, etc.

• Computer Science and Engineering:
• Performance Analysis (Courtois [2])
• Web Search (NG13 [8])
• Recommendation and Data Mining (NG14 [7])
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